High density lipoprotein: the role of apolipoprotein A2

Eva Xepapadaki, Christina Kalogeropoulou, Evangelia Zvintzou, Serafoula Filou, Kyriakos Kypreos


Atherosclerosis is a multistep process that progresses over a long period of time and displays a broad range of severity. In its final form, it manifests as a lesion of the intimal layer of the arterial wall. Multiple epidemiological and clinical studies in the past suggested that reduced HDL cholesterol (HDL-C) levels may correlate with increased risk for atherosclerosis. More recent data indicated that high density lipoprotein (HDL) particle functionality rather than HDL-C levels is a much more important parameter for human health and disease. Recent data from clinical paradigms and studies in mice support the interesting hypothesis that variations in HDL proteome may set the basis for its functionality. Apolipoprotein A2 (APOA2) is the second most abundant protein of HDL and plays a crucial role in HDL particle synthesis. Studies in mice suggested a proatherogenic role for APOA2 though studies in humans failed thus far to establish a clear role for APOA2 in atherosclerosis. Interestingly, though APOA2 increases HDL-C levels, the effects of this protein on HDL functionality are not adequately investigated. Understanding how APOA2 affects HDL and the lipoprotein transport system may provide another important piece in the puzzle of the mechanisms linking plasma lipoproteins with atherosclerosis.


High density lipoprotein; Atherosclerosis; Apolipoprotein A2

Full Text:



Constantinou, C., Karavia, E. A., Xepapadaki, E., Petropoulou, P. I., Papakosta, E., Karavyraki, M., Zvintzou, E., Theodoropoulos, V., Filou, S., Hatziri, A., Kalogeropoulou, C., Panayiotakopoulos, G., and Kypreos, K. E. (2015) Advances in High Density Lipoprotein Physiology: surprises, overturns and promises, Am. J. Physiol Endocrinol. Metab ajpendo

Gofman, J. W., Glazier, F., Tamplin, A., Strisower, B., and De, L. O (1954) Lipoproteins, coronary heart disease, and atherosclerosis, Physiol Rev. 34, 589-607

Delalla, O. F., Elliott, H. A., and Gofman, J. W. (1954) Ultracentrifugal studies of high density serum lipoproteins in clinically healthy adults, Am. J. Physiol 179, 333-337

Miller, G. J. and Miller, N. E. (1975) Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease, Lancet 1, 16-19

Tsompanidi, E. M., Brinkmeier, M. S., Fotiadou, E. H., Giakoumi, S. M., and Kypreos, K. E. (2010) HDL biogenesis and functions: Role of HDL quality and quantity in atherosclerosis, Atherosclerosis 208, 3-9

Kypreos, K. E., Gkizas, S., Rallidis, L. S., and Karagiannides, I. (2013) HDL particle functionality as a primary pharmacological target for HDL-based therapies, Biochem. Pharmacol. 85, 1575-1578

Karavia, E. A., Zvintzou, E., Petropoulou, P. I., Xepapadaki, E., Constantinou, C., and Kypreos, K. E. (2014) HDL quality and functionality: what can proteins and genes predict?, Expert. Rev. Cardiovasc. Ther. 12, 521-532

Chapman, M. J., Assmann, G., Fruchart, J. C., Shepherd, J., and Sirtori, C. (2004) Raising high-density lipoprotein cholesterol with reduction of cardiovascular risk: the role of nicotinic acid--a position paper developed by the European Consensus Panel on HDL-C, Curr. Med. Res. Opin. 20, 1253-1268

Barter, P. J., Caulfield, M., Eriksson, M., Grundy, S. M., Kastelein, J. J., Komajda, M., Lopez-Sendon, J., Mosca, L., Tardif, J. C., Waters, D. D., Shear, C. L., Revkin, J. H., Buhr, K. A., Fisher, M. R., Tall, A. R., and Brewer, B. (2007) Effects of torcetrapib in patients at high risk for coronary events, N. Engl. J Med. 357, 2109-2122

Schwartz, G. G., Olsson, A. G., Abt, M., Ballantyne, C. M., Barter, P. J., Brumm, J., Chaitman, B. R., Holme, I. M., Kallend, D., Leiter, L. A., Leitersdorf, E., McMurray, J. J., Mundl, H., Nicholls, S. J., Shah, P. K., Tardif, J. C., and Wright, R. S. (2012) Effects of dalcetrapib in patients with a recent acute coronary syndrome, N. Engl. J Med. 367, 2089-2099

Lincoff, A. M., Nicholls, S. J., Riesmeyer, J. S., Barter, P. J., Brewer, H. B., Fox, K. A. A., Gibson, C. M., Granger, C., Menon, V., Montalescot, G., Rader, D., Tall, A. R., McErlean, E., Wolski, K., Ruotolo, G., Vangerow, B., Weerakkody, G., Goodman, S. G., Conde, D., McGuire, D. K., Nicolau, J. C., Leiva-Pons, J. L., Pesant, Y., Li, W., Kandath, D., Kouz, S., Tahirkheli, N., Mason, D., and Nissen, S. E. (2017) Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease, N. Engl. J. Med. 376, 1933-1942

Bowman, L., Hopewell, J. C., Chen, F., Wallendszus, K., Stevens, W., Collins, R., Wiviott, S. D., Cannon, C. P., Braunwald, E., Sammons, E., and Landray, M. J. (2017) Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease, N. Engl. J. Med. 377, 1217-1227

Boden, W. E., Probstfield, J. L., Anderson, T., Chaitman, B. R., Desvignes-Nickens, P., Koprowicz, K., McBride, R., Teo, K., and Weintraub, W. (2011) Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy, N. Engl. J. Med. 365, 2255-2267

Landray, M. J., Haynes, R., Hopewell, J. C., Parish, S., Aung, T., Tomson, J., Wallendszus, K., Craig, M., Jiang, L., Collins, R., and Armitage, J. (2014) Effects of extended-release niacin with laropiprant in high-risk patients, N. Engl. J. Med. 371, 203-212

Voight, B. F., Peloso, G. M., Orho-Melander, M., Frikke-Schmidt, R., Barbalic, M., Jensen, M. K., Hindy, G., Holm, H., Ding, E. L., Johnson, T., Schunkert, H., Samani, N. J., Clarke, R., Hopewell, J. C., Thompson, J. F., Li, M., Thorleifsson, G., Newton-Cheh, C., Musunuru, K., Pirruccello, J. P., Saleheen, D., Chen, L., Stewart, A., Schillert, A., Thorsteinsdottir, U., Thorgeirsson, G., Anand, S., Engert, J. C., Morgan, T., Spertus, J., Stoll, M., Berger, K., Martinelli, N., Girelli, D., McKeown, P. P., Patterson, C. C., Epstein, S. E., Devaney, J., Burnett, M. S., Mooser, V., Ripatti, S., Surakka, I., Nieminen, M. S., Sinisalo, J., Lokki, M. L., Perola, M., Havulinna, A., de, F. U., Gigante, B., Ingelsson, E., Zeller, T., Wild, P., de Bakker, P. I., Klungel, O. H., Maitland-van der Zee AH, Peters, B. J., de, B. A., Grobbee, D. E., Kamphuisen, P. W., Deneer, V. H., Elbers, C. C., Onland-Moret, N. C., Hofker, M. H., Wijmenga, C., Verschuren, W. M., Boer, J. M., van der Schouw, Y. T., Rasheed, A., Frossard, P., Demissie, S., Willer, C., Do, R., Ordovas, J. M., Abecasis, G. R., Boehnke, M., Mohlke, K. L., Daly, M. J., Guiducci, C., Burtt, N. P., Surti, A., Gonzalez, E., Purcell, S., Gabriel, S., Marrugat, J., Peden, J., Erdmann, J., Diemert, P., Willenborg, C., Konig, I. R., Fischer, M., Hengstenberg, C., Ziegler, A., Buysschaert, I., Lambrechts, D., Van de Werf, F., Fox, K. A., El Mokhtari, N. E., Rubin, D., Schrezenmeir, J., Schreiber, S., Schafer, A., Danesh, J., Blankenberg, S., Roberts, R., McPherson, R., Watkins, H., Hall, A. S., Overvad, K., Rimm, E., Boerwinkle, E., Tybjaerg-Hansen, A., Cupples, L. A., Reilly, M. P., Melander, O., Mannucci, P. M., Ardissino, D., Siscovick, D., Elosua, R., Stefansson, K., O’Donnell, C. J., Salomaa, V., Rader, D. J., Peltonen, L., Schwartz, S. M., Altshuler, D., and Kathiresan, S. (2012) Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study, Lancet 380, 572-580

Madsen, C. M., Varbo, A., and Nordestgaard, B. G. (2017) Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: two prospective cohort studies, Eur. Heart J. 38, 2478-2486

Bowe, B., Xie, Y., Xian, H., Balasubramanian, S., Zayed, M. A., and Al-Aly, Z. (2016) High Density Lipoprotein Cholesterol and the Risk of All-Cause Mortality among U.S. Veterans, Clin. J. Am. Soc. Nephrol. 11, 1784-1793

Filou, S., Lhomme, M., Karavia, E. A., Kalogeropoulou, C., Theodoropoulos, V., Zvintzou, E., Sakellaropoulos, G. C., Petropoulou, P. I., Constantinou, C., Kontush, A., and Kypreos, K. E. (2016) Distinct Roles of Apolipoproteins A1 and E in the Modulation of High-Density Lipoprotein Composition and Function, Biochemistry 55, 3752-3762

Zannis, V. I., Kypreos, K. E., Chroni, A., Kardassis, D., and Zanni, E. E. (2004) in Molecular Mechanisms of Atherosclerosis (Loscalzo, J., Ed.) pp 111-174, Taylor & Francis, New York, NY

Soutar, A. K., Garner, C. W., Baker, H. N., Sparrow, J. T., Jackson, R. L., Gotto, A. M., and Smith, L. C. (1975) Effect of the human plasma apolipoproteins and phosphatidylcholine acyl donor on the activity of lecithin: cholesterol acyltransferase, Biochemistry 14, 3057-3064

Chroni, A., Liu, T., Gorshkova, I., Kan, H. Y., Uehara, Y., von Eckardstein, A., and Zannis, V. I. (2003) The central helices of apoA-I can promote ATP-binding cassette transporter A1 (ABCA1)-mediated lipid efflux. Amino acid residues 220-231 of the wild-type apoA-I are required for lipid efflux in vitro and high density lipoprotein formation in vivo, J. Biol. Chem. 278, 6719-6730

Fitzgerald, M. L., Morris, A. L., Chroni, A., Mendez, A. J., Zannis, V. I., and Freeman, M. W. (2004) ABCA1 and amphipathic apolipoproteins form high-affinity molecular complexes required for cholesterol efflux, J. Lipid Res. 45, 287-294

Ji, A., Wroblewski, J. M., Cai, L., de Beer, M. C., Webb, N. R., and van der Westhuyzen, D. R. (2012) Nascent HDL formation in hepatocytes and role of ABCA1, ABCG1, and SR-BI, J. Lipid Res. 53, 446-455

Kypreos, K. E. and Zannis, V. I. (2007) Pathway of biogenesis of apolipoprotein E-containing HDL in vivo with the participation of ABCA1 and LCAT, Biochem. J. 403, 359-367

Schultz, J. R., Gong, E. L., McCall, M. R., Nichols, A. V., Clift, S. M., and Rubin, E. M. (1992) Expression of human apolipoprotein A-II and its effect on high density lipoproteins in transgenic mice, J. Biol. Chem. 267, 21630-21636

Kypreos, K. E. (2008) ABCA1 Promotes the de Novo Biogenesis of Apolipoprotein CIII-Containing HDL Particles in Vivo and Modulates the Severity of Apolipoprotein CIII-Induced Hypertriglyceridemia, Biochemistry 47, 10491-10502

Kavo, A. E., Rallidis, L. S., Sakellaropoulos, G. C., Lehr, S., Hartwig, S., Eckel, J., Bozatzi, P. I., Anastasiou-Nana, M., Tsikrika, P., and Kypreos, K. E. (2012) Qualitative characteristics of HDL in young patients of an acute myocardial infarction, Atherosclerosis 220, 257-264

Zvintzou, E., Lhomme, M., Chasapi, S., Filou, S., Theodoropoulos, V., Xapapadaki, E., Kontush, A., Spyroulias, G., Tellis, C. C., Tselepis, A. D., Constantinou, C., and Kypreos, K. E. (2017) Pleiotropic effects of apolipoprotein C3 on HDL functionality and adipose tissue metabolic activity, J. Lipid Res. 58, 1869-1883

Pamir, N., Pan, C., Plubell, D. L., Hutchins, P. M., Tang, C., Wimberger, J., Irwin, A., Vallim, T. Q. A., Heinecke, J. W., and Lusis, A. J. (2019) Genetic control of the mouse HDL proteome defines HDL traits, function, and heterogeneity, J. Lipid Res

Katsiki, N., Athyros, V. G., Karagiannis, A., and Mikhailidis, D. P. (2014) High-density lipoprotein, vascular risk, cancer and infection: a case of quantity and quality?, Curr. Med. Chem. 21, 2917-2926

Otocka-Kmiecik, A., Mikhailidis, D. P., Nicholls, S. J., Davidson, M., Rysz, J., and Banach, M. (2012) Dysfunctional HDL: a novel important diagnostic and therapeutic target in cardiovascular disease?, Prog. Lipid Res. 51, 314-324

Lagos, K. G., Filippatos, T. D., Tsimihodimos, V., Gazi, I. F., Rizos, C., Tselepis, A. D., Mikhailidis, D. P., and Elisaf, M. S. (2009) Alterations in the high density lipoprotein phenotype and HDL-associated enzymes in subjects with metabolic syndrome, Lipids 44, 9-16

Nobecourt, E., Jacqueminet, S., Hansel, B., Chantepie, S., Grimaldi, A., Chapman, M. J., and Kontush, A. (2005) Defective antioxidative activity of small dense HDL3 particles in type 2 diabetes: relationship to elevated oxidative stress and hyperglycaemia, Diabetologia 48, 529-538

Morgantini, C., Natali, A., Boldrini, B., Imaizumi, S., Navab, M., Fogelman, A. M., Ferrannini, E., and Reddy, S. T. (2011) Anti-inflammatory and antioxidant properties of HDLs are impaired in type 2 diabetes, Diabetes 60, 2617-2623

Brewer, H. B., Jr., Lux, S. E., Ronan, R., and John, K. M. (1972) Amino acid sequence of human apoLp-Gln-II (apoA-II), an apolipoprotein isolated from the high-density lipoprotein complex, Proc. Natl. Acad. Sci. U. S. A 69, 1304-1308

Pownall, H. J., Gillard, B. K., and Gotto, A. M., Jr. (2013) Setting the course for apoAII: a port in sight?, Clin. Lipidol. 8, 551-560

Schonfeld, G., Patsch, W., Rudel, L. L., Nelson, C., Epstein, M., and Olson, R. E. (1982) Effects of dietary cholesterol and fatty acids on plasma lipoproteins, J. Clin. Invest 69, 1072-1080

Hussain, M. M. and Zannis, V. I. (1990) Intracellular modification of human apolipoprotein AII (apoAII) and sites of apoAII mRNA synthesis: comparison of apoAII with apoCII and apoCIII isoproteins, Biochemistry 29, 209-217

Borghini, I., Barja, F., Pometta, D., and James, R. W. (1995) Characterization of subpopulations of lipoprotein particles isolated from human cerebrospinal fluid, Biochim. Biophys. Acta 1255, 192-200

Warden, C. H., Hedrick, C. C., Qiao, J. H., Castellani, L. W., and Lusis, A. J. (1993) Atherosclerosis in transgenic mice overexpressing apolipoprotein A-II, Science 261, 469-472

Kalopissis, A. D., Pastier, D., and Chambaz, J. (2003) Apolipoprotein A-II: beyond genetic associations with lipid disorders and insulin resistance, Curr Opin Lipidol. 14, 165-172

Lusis, A. J. (1988) Genetic factors affecting blood lipoproteins: the candidate gene approach, J. Lipid Res. 29, 397-429

Marzal-Casacuberta, A., Blanco-Vaca, F., Ishida, B. Y., Julve-Gil, J., Shen, J., Calvet-Marquez, S., Gonzalez-Sastre, F., and Chan, L. (1996) Functional lecithin:cholesterol acyltransferase deficiency and high density lipoprotein deficiency in transgenic mice overexpressing human apolipoprotein A-II, J. Biol. Chem. 271, 6720-6728

Boisfer, E., Lambert, G., Atger, V., Tran, N. Q., Pastier, D., Benetollo, C., Trottier, J. F., Beaucamps, I., Antonucci, M., Laplaud, M., Griglio, S., Chambaz, J., and Kalopissis, A. D. (1999) Overexpression of human apolipoprotein A-II in mice induces hypertriglyceridemia due to defective very low density lipoprotein hydrolysis, J. Biol. Chem. 274, 11564-11572

Schultz, J. R., Verstuyft, J. G., Gong, E. L., Nichols, A. V., and Rubin, E. M. (1993) Protein composition determines the anti-atherogenic properties of HDL in transgenic mice, Nature 365, 762-764

Escola-Gil, J. C., Marzal-Casacuberta, A., Julve-Gil, J., Ishida, B. Y., Ordonez-Llanos, J., Chan, L., Gonzalez-Sastre, F., and Blanco-Vaca, F. (1998) Human apolipoprotein A-II is a pro-atherogenic molecule when it is expressed in transgenic mice at a level similar to that in humans: evidence of a potentially relevant species-specific interaction with diet, J. Lipid Res. 39, 457-462

Hedrick, C. C., Castellani, L. W., Warden, C. H., Puppione, D. L., and Lusis, A. J. (1993) Influence of mouse apolipoprotein A-II on plasma lipoproteins in transgenic mice, J. Biol. Chem. 268, 20676-20682

Weng, W. and Breslow, J. L. (1996) Dramatically decreased high density lipoprotein cholesterol, increased remnant clearance, and insulin hypersensitivity in apolipoprotein A-II knockout mice suggest a complex role for apolipoprotein A-II in atherosclerosis susceptibility, Proc. Natl. Acad. Sci. U. S. A 93, 14788-14794

van ‘t Hooft, F. M., Ruotolo, G., Boquist, S., de, F. U., Eggertsen, G., and Hamsten, A. (2001) Human evidence that the apolipoprotein a-II gene is implicated in visceral fat accumulation and metabolism of triglyceride-rich lipoproteins, Circulation 104, 1223-1228

Gordon, S. M., Chung, J. H., Playford, M. P., Dey, A. K., Sviridov, D., Seifuddin, F., Chen, Y. C., Pirooznia, M., Chen, M. Y., Mehta, N. N., and Remaley, A. T. (2018) High density lipoprotein proteome is associated with cardiovascular risk factors and atherosclerosis burden as evaluated by coronary CT angiography, Atherosclerosis 278, 278-285

Kido, T., Kurata, H., Kondo, K., Itakura, H., Okazaki, M., Urata, T., and Yokoyama, S. (2016) Bioinformatic Analysis of Plasma Apolipoproteins A-I and A-II Revealed Unique Features of A-I/A-II HDL Particles in Human Plasma, Sci. Rep. 6, 31532

Kido, T., Kondo, K., Kurata, H., Fujiwara, Y., Urata, T., Itakura, H., and Yokoyama, S. (2017) ApoA-I/A-II-HDL positively associates with apoB-lipoproteins as a potential atherogenic indicator, Lipids Health Dis. 16, 225

Ji, J., Watts, G. F., Johnson, A. G., Chan, D. C., Ooi, E. M., Rye, K. A., Serone, A. P., and Barrett, P. H. (2006) High-density lipoprotein (HDL) transport in the metabolic syndrome: application of a new model for HDL particle kinetics, J. Clin. Endocrinol. Metab 91, 973-979

Alaupovic, P., Knight-Gibson, C., Wang, C. S., Downs, D., Koren, E., Brewer, H. B., Jr., and Gregg, R. E. (1991) Isolation and characterization of an apoA-II-containing lipoprotein (LP-A-II:B complex) from plasma very low density lipoproteins of patients with Tangier disease and type V hyperlipoproteinemia, J. Lipid Res. 32, 9-19

Desai, N. K., Ooi, E. M., Mitchell, P. D., Furtado, J., and Sacks, F. M. (2015) Metabolism of apolipoprotein A-II containing triglyceride rich ApoB lipoproteins in humans, Atherosclerosis 241, 326-333

Corella, D., Arnett, D. K., Tsai, M. Y., Kabagambe, E. K., Peacock, J. M., Hixson, J. E., Straka, R. J., Province, M., Lai, C. Q., Parnell, L. D., Borecki, I., and Ordovas, J. M. (2007) The -256T>C polymorphism in the apolipoprotein A-II gene promoter is associated with body mass index and food intake in the genetics of lipid lowering drugs and diet network study, Clin. Chem. 53, 1144-1152

Corella, D., Peloso, G., Arnett, D. K., Demissie, S., Cupples, L. A., Tucker, K., Lai, C. Q., Parnell, L. D., Coltell, O., Lee, Y. C., and Ordovas, J. M. (2009) APOA2, dietary fat, and body mass index: replication of a gene-diet interaction in 3 independent populations, Arch. Intern. Med. 169, 1897-1906

Zaki, M. E., Amr, K. S., and Abdel-Hamid, M. (2013) APOA2 Polymorphism in Relation to Obesity and Lipid Metabolism, Cholesterol. 2013, 289481

Smith, C. E., Tucker, K. L., Arnett, D. K., Noel, S. E., Corella, D., Borecki, I. B., Feitosa, M. F., Aslibekyan, S., Parnell, L. D., Lai, C. Q., Lee, Y. C., and Ordovas, J. M. (2013) Apolipoprotein A2 polymorphism interacts with intakes of dairy foods to influence body weight in 2 U.S. populations, J. Nutr. 143, 1865-1871

Lai, C. Q., Smith, C. E., Parnell, L. D., Lee, Y. C., Corella, D., Hopkins, P., Hidalgo, B. A., Aslibekyan, S., Province, M. A., Absher, D., Arnett, D. K., Tucker, K. L., and Ordovas, J. M. (2018) Epigenomics and metabolomics reveal the mechanism of the APOA2-saturated fat intake interaction affecting obesity, Am. J. Clin. Nutr. 108, 188-200

Dominguez-Reyes, T., Astudillo-Lopez, C. C., Salgado-Goytia, L., Munoz-Valle, J. F., Salgado-Bernabe, A. B., Guzman-Guzman, I. P., Castro-Alarcon, N., Moreno-Godinez, M. E., and Parra-Rojas, I. (2015) Interaction of dietary fat intake with APOA2, APOA5 and LEPR polymorphisms and its relationship with obesity and dyslipidemia in young subjects, Lipids Health Dis. 14, 106

Kontush, A., Lindahl, M., Lhomme, M., Calabresi, L., Chapman, M. J., and Davidson, W. S. (2015) Structure of HDL: particle subclasses and molecular components, Handb. Exp. Pharmacol. 224, 3-51

Kontush, A., Lhomme, M., and Chapman, M. J. (2013) Unraveling the complexities of the HDL lipidome, J. Lipid Res. 54, 2950-2963

Kontush, A. and Chapman, M. J. (2010) Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities, Curr. Opin. Lipidol. 21, 312-318

DOI: http://dx.doi.org/10.23803/hja.v9i4.196

DOI (PDF): http://dx.doi.org/10.23803/hja.v9i4.196.g170


  • There are currently no refbacks.